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Probabilistic predictions

Red curve calculated by weighting different parts of parameter
space according to quality of simulation of present-day climate

Murphy et al 2004
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What does probability distribution mean

Could give policy-maker terabytes of model
and observed data each time
OR a summary statement of how future
climate is consistent with the information
provided
Probability distribution is a function of

Model data
Observations
Prior information
Model imperfections
Analysis method and assumptions
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Physics/dynamics matter…

Compare models against several
observational variables – with just one variable
you can simulate climate well for the wrong
reasons
Will compare with present-day mean climate -
Indirect assessment of key processes for our
climate prediction but adds confidence to our
prediction of one-off event
We are not going to assume models are
perfect so using better models has an impact
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Bayesian framework
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Bayesian prediction

Aim is to construct joint probability distribution
p(X, mh , mf ,y,o,d) of all uncertain objects in
problem.

 Input parameters (X)
Historical Model output (mh)
Model prediction (mf)
True climate (yh,yf)
Observations (o)
Model imperfections (d)

It measures how all objects are related in a
probabilistic sense



© Crown copyright 2004 Page 8

Goldstein and Rougier (2004) –
The “Best-input” assumption

Start with a perturbed physics ensemble
Hypothesise that there is a set of input
parameters, x*, that provide the best climate
model
But acknowledge that this best model is
imperfect and that there is a discrepancy, d,
compared to real climate
We only know the probability that each point in
parameter space is the best-input model. But
that means we need a model at every part of
parameter space…
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Emulators are statistical models, trained on ensemble of 300 slab runs,
designed to predict model output at untried parameter combinations
 (a t-distribution at each sampled point)

Monte Carlo sampling of parameters combined with an emulator
(combining lots of t-distributions) produces prior pdf (blue line).

Emulators
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Linking objects in Bayesian framework
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Comparing models with observations

Use likelihood function i.e. skill of model is likelihood of
model data given some observations

11
log ( ) log | | ( ) ( )

2 2

T

o

n
L c

!
= ! ! !m V m-o V m -o

V = obs uncertainty + emulator error + discrepancy



© Crown copyright 2004 Page 12

Likelihood alters probability of x*
Reduce uncertainty about the best input, x*

Most effective if a strong relationship exists

Constraining predictions
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Discrepancy on future variable

Model not perfect so there are processes in
real system not in our model that could alter
model response by an uncertain amount.

Places extra uncertainty on prediction variable
in form of a variance
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Discrepancy (ii)

• Avoids observations
over-constraining the
pdfs.

• Avoids contradictions
from subsequent
analyses when some
observations have
been allowed to
constrain the problem
too strongly.
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Discrepancy (iii)

• Provides a means of accounting for model
quality

• Models with less imperfection given more weight –
dynamics/physics matter!

• Model improvements can subsequently be tracked

• Constraint of observations gradually improve as
model improves rather than jumping from
“unusable” to “usable”.
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Estimating a proxy for discrepancy
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Estimating discrepancy

Four ways I can think of…

Elicitation
Observations
Super-parameterised models
Ensemble of international climate models
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Estimating discrepancy

Use multimodel ensemble from AR4 and
CFMIP
For each multimodel ensemble member, find
point in QUMP parameter space that is closest
to that member
There is a distance between climates of this
multimodel ensemble member and this point in
parameter space i.e. effect of processes not
explored by QUMP.
Pool these distances over all multimodel
ensemble members
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Adding information from other climate models e.g.
summer UK rainfall

Prior

Posterior - no future
discrepancy

Posterior – future
discrepancy, no offset

Posterior – future
discrepancy with offset

INTERIM
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Biases in QUMP prediction of multimodel runs

X-axis is difference
between each multimodel
and its ‘best point’ in
QUMP parameter space
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Climate sensitivity

INTERIM
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Conclusions
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Properties of the climate prediction (i)

MULTIVARIATE
Predicts joint distributions

Predictions of individual variables consistent with
marginal distributions from joint analysis

Different prediction variables can be constrained
by different observations

Can use lots of observations to constrain prediction
Only new independent observations impact on

probability distribution
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Properties of the climate prediction (ii)

PRIOR
Don’t let predictions be dependent on sampling

strategy
 Instead predictions are representative of whole

parameter space given some expert-chosen
distribution

Allow a sensitivity analysis so it is easy to try out
different expert’s distributions
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Properties of the climate prediction (iii)

MODEL IMPERFECTIONS
Acknowledge that our models are not perfect

therefore we have to be careful about comparing
modelled and observed data
Don’t let poorly modelled variables over-constrain

PDF
Allow for a modelling uncertainty additional to one

explored by perturbing parameters:
Observable model variables
Forecast variables
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Reducing uncertainty

Improve observational uncertainties
Improve model i.e. reduce discrepancy
Run larger ensembles
Use more observational constraints
independent of the ones used already
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Observational uncertainties

Please keep producing better data sets that
allow the model to be evaluated in more detail
Require observational errors in an easily-
accessible format
Any advice on errors for ERBE, CERES, or
ISCCP most welcome.
Any advice most welcome on new data sets
and whether they need new model
diagnostics.


